

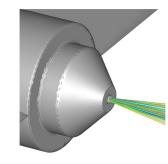
ICSC Innovation and Community Day

11 Novembre 2025

DAMA - Tecnopolo Data Manifattura Emilia-Romagna (Bologna)

NOZZLE-TEC: spray-NOZZLE TEChnical Characterization

ESTECO S.p.A., CIRA S.c.p.a., Mare Group S.p.A.


PROJECT OBJECTIVE:

The Project aims to characterize the fluid dynamics and structural performance of a nozzle for injecting atomized water into the CIRA Icing Wind Tunnel, validating the developed method with numerical-experimental data available to the consortium.

CHALLENGES:

- ✓ Design of a nozzle optimized both structurally and in terms of fluid dynamics performance through the intensive use of HPC resources
- ✓ Improving methodologies for generating complex computational grids while minimizing human intervention
- ✓ Enhancing the efficiency of the CIRA IWT facility in terms of maintenance and power consumption

FEM Approach and Meshless Validation

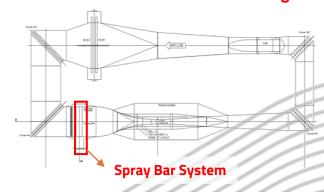
Approach and advantages

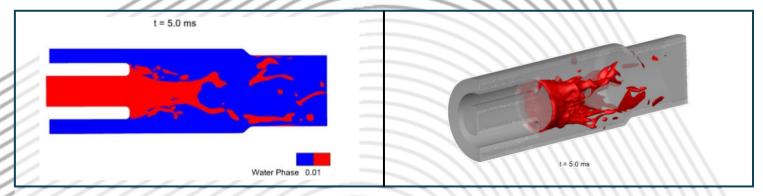
Development of a digital twin of the IWT and simulation of the nozzle using a meshless approach (based on the RBF-FD method).

- Reduction of issues related to the traditional computational mesh/grid
- Ease of handling complex 3D geometries
- High-accuracy schemes

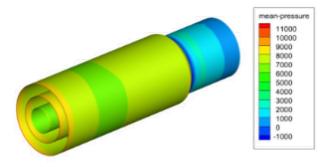
Objectives

- Accurate simulation of two-phase flow using conventional methods
- Coupling of conventional fluid dynamics and structural solutions through the VOLTA software platform
- Development and validation of the meshless solver for two-phase flow simulations
- Coupling of meshless method with FEM model for parametric studies to enhance nozzle efficiency and operational lifespan without incurring in geometric deformations




Conventional Fluid Dynamics Analysis

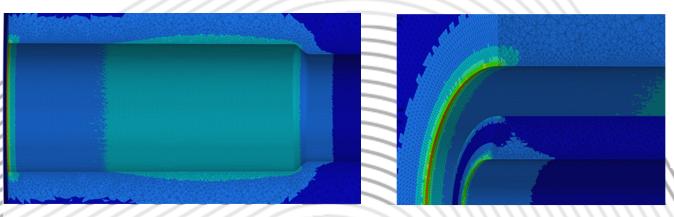
Understanding of the fluid and structure behavior in the CIRA IWT nozzle

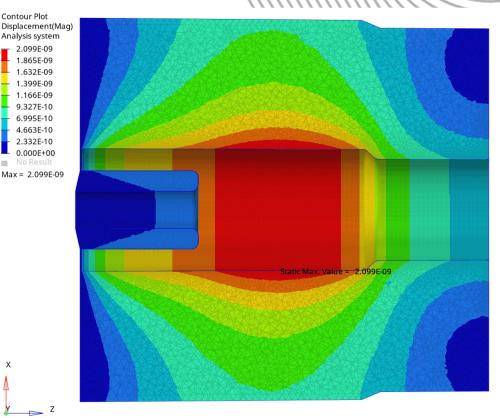

CIRA IWT: Schematic Drawing

- The CFD VOF model was solved to obtain the fluid atomization structures within the nozzle.
- The Pressure load on the nozzle was collected and used as boundary condition input for the structural analyses.

Pressure load on the nozzle boundary

1.632E-09 1.399E-09 1.166E-09 9.327E-10 6.995E-10 4.663E-10


2.332E-10 0.000E+00



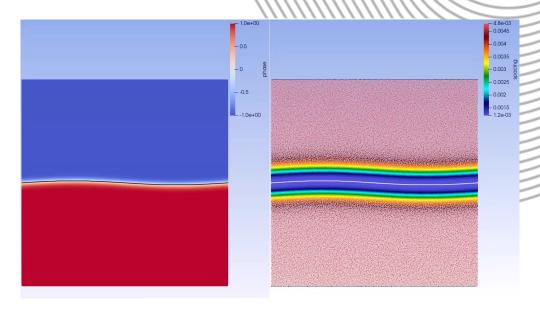
Structural Analysis

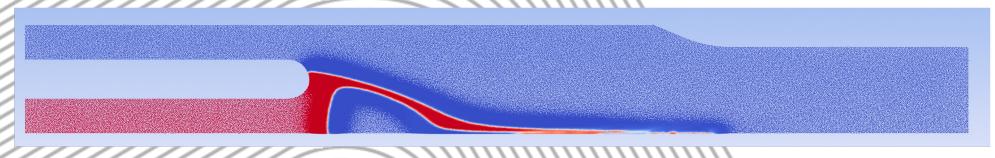
FEM simulation of the pressurized nozzle

- Generation of simplified 2D/3D meshes and import of pressure loads from CFD analyses.
- Mapping and validation of the applied loads within the FEM model.
- Evaluation of stress and deformation fields, identifying critical areas subject to wear.

Deformed shape of the nozzle under CFD pressure load, amplified by 2×10^7

Von Mises stress contours for the pressurized nozzle




Meshless Solver

Interface capturing

- Ability to capture multiple interfaces
- Example studied: Rayleigh-Taylor and Kelvin-Helmholtz instabilities, rising bubble
- For the nozzle simulation, we are implementing the mixture model to properly account for the secondary phases, which play a crucial role

Kelvin-Helmholtz instability

Adaptive meshless nodalisation for interface capturing along the symmetry plane - nozzle simulation

Wrapping Up and Moving Forward

Final steps

- Finalization of the FSI workflow
- Meshless solver validation and integration
- Parametric studies with VOLTA on HPC resources

Future opportunities

- Evaluation of improvement to increase the efficiency of the IWT facility
- Use of VOLTA for future activities on the IWT facility
- Application of the meshless solver to new problems and advancement of its TRL

