

ISOLA D'ELBA – LA BIODOLA, 5 - 8 OTTOBRE 2025

Spoke 8 - In Silico Medicine WPs

WP1 - Implementation
of modelling &
simulation platforms
(open Source and
commercial) through
HPC solvers

- identifying methodologies for implementing HPC solvers within the project
- developing In Silico model platforms through the use of identified HPC solvers, and handling the optimization and scalability of these models

WP2 - Digital twins and in silico trials

- development of vertical solutions for In Silico Trials
- development of vertical solutions for Digital Twins in healthcare
- definition of specifications and prototypes for a Virtual Human Twin infrastructure

WP3 - Integrated digital data flow between clinics and HPC centers and Easy-to-use GUI for HPC solvers (hiding complexity for ultimate users)

- data exchange between healthcare facilities, such as hospitals and clinics, and HPC centers
- monitoring the adoption at national level of the law on data governance
- the implementation of the infrastructure that manages the flow of final clinical data, and the development of a web-based user interface

WP1-WP2: Solvers, In Silico Trials & Digital Twins

• HPC & Solver Optimization (WP1):

WP1 focused on adapting and optimizing simulation tools for high-performance computing (HPC) to enable large-scale biomedical modeling.

Several solvers — from molecular dynamics (GROMACS, AMBER) to AI frameworks (TensorFlow, PyTorch) and brain simulators (TVB, BSB) — were profiled and optimized on CINECA's Leonardo and ADAcloud infrastructures.

• In Silico Trials (IST) & Digital Twins (DTH) (WP2):

Over the past three years, WP2 has consolidated a suite of In Silico Medicine solutions that bridge advanced computation and clinical translation.

Seven In Silico Trial platforms (e.g., UISS-COVID19, BoneStrength, IST4JR) and eight Digital Twins (e.g., UISS-MS-MRI, PHENSIM, BBCT-Hip, PlasticBrain) were developed and validated across European HPC and cloud infrastructures.

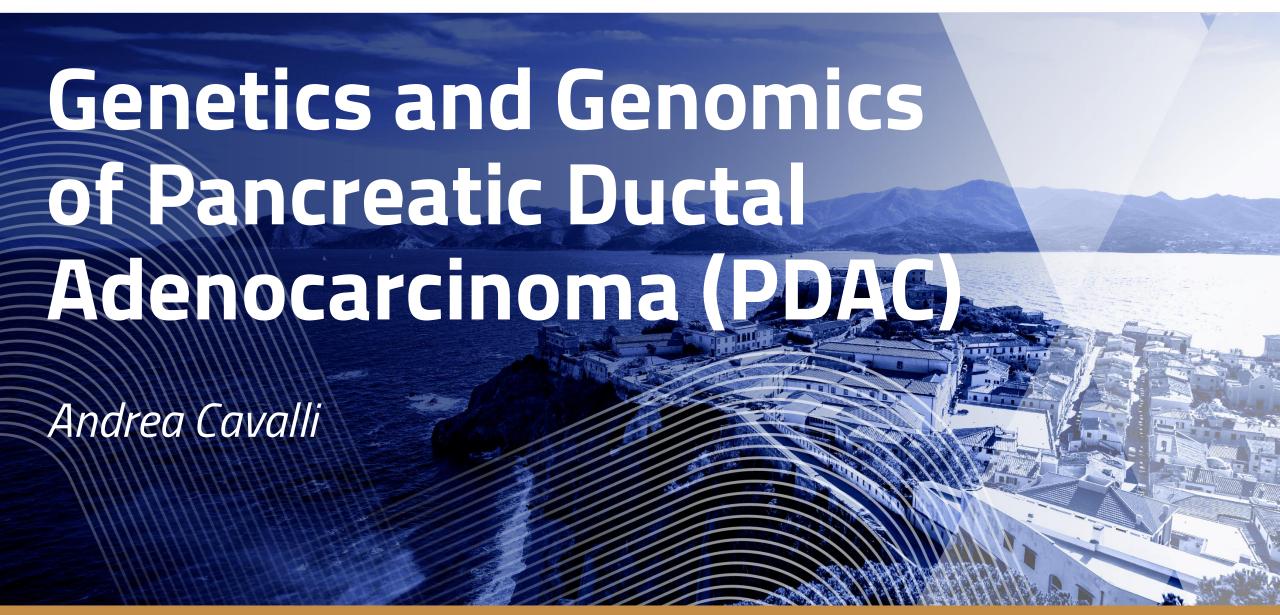
These tools address diverse biomedical challenges — from immune response simulation and vaccine design to fracture risk prediction and neuro-musculoskeletal modeling — showcasing the power of HPC to accelerate discovery and decision support.

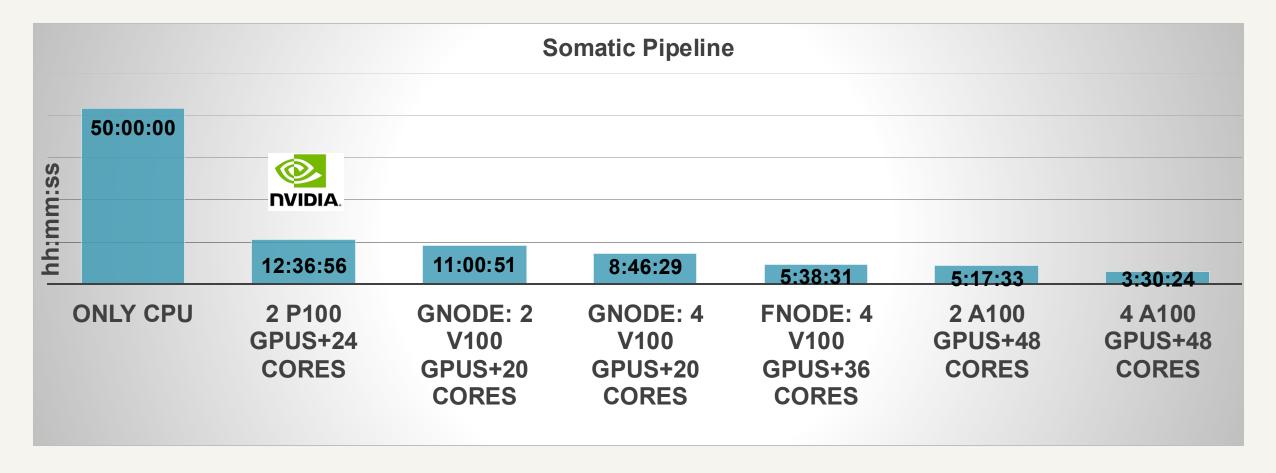
WP3: Cost, Scalability & Impact

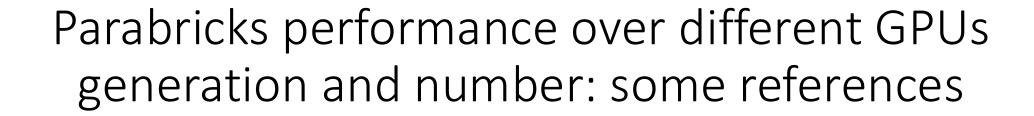
WP3 focused on bridging the gap between advanced computational models and clinical usability, ensuring that Digital Twin technologies can be realistically adopted in healthcare settings.

The work centered on two flagship solutions — BBCT-Hip (orthopaedic risk prediction) and UISS-MS-MRI (multiple sclerosis management) — to evaluate their ease of use, computational requirements, and economic sustainability when deployed on the ICSC/INFN EPIC Cloud infrastructure.

A major achievement was demonstrating that highly sophisticated in silico tools can be used intuitively by clinicians through user-friendly interfaces, hiding the underlying HPC and AI complexity.


Both applications were assessed for cost-effectiveness, confirming their economic viability under AIFA thresholds.



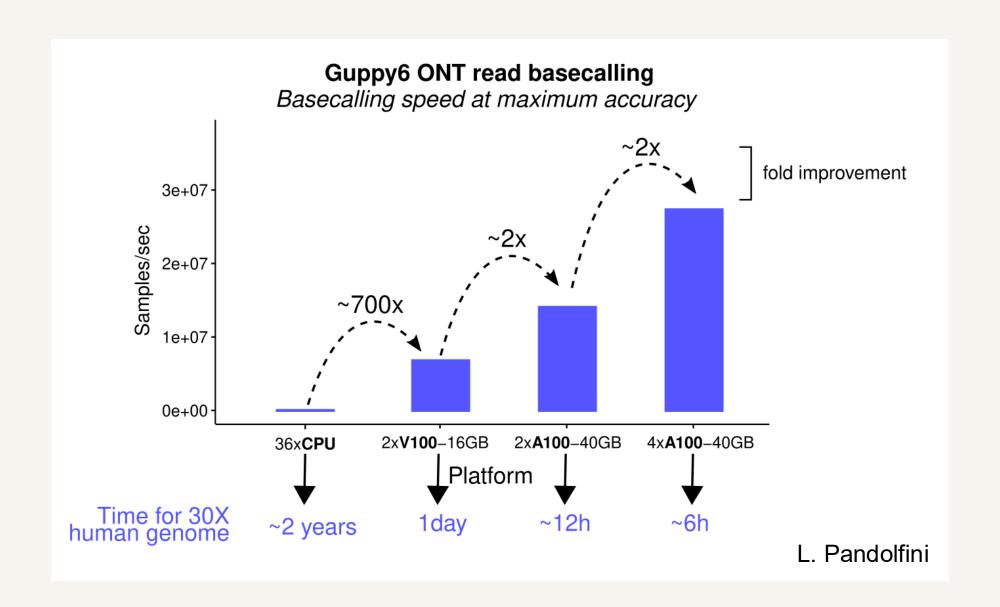


Genomics & HPC

Using a FAT node (with 4 V100 GPUs, 36 cores) leads up to 1.6x speed up than using a GPU node (with 4 V100 GPUs, 20 Cores)

Using 8 A100 GPUs and 128 cores leads up to just 1.1x speed up than using 4 A100 GPUs and 128 cores

PERFORMANCE COMPARISON


Germline End-to-End Secondary Analysis

Data was generated using publicly available data (https://precision.fda.gov/challenges/truth) for NA12878, deprecating the data to 30X coverage. For the 22-minute runtime, DGX A100 with 320G memory was used. The native GATK4.1 numbers were generated using 32 vCPU (3.1 GHz Intel Xeon® Platinum 8175M) using 28Gb RAM.

https://www.nvidia.com/en-us/clara/genomics/

PromeTHION (Nanopore) – Long reads

TITOLO SEZIONE

@Andrea: Proof of concept PDAC genomics in Humanitas and Infermi Hospital Rimini

Clinical genomics with direct impact on patients

Research activities for novel discoveries in PDAC

Pancreatic Cancer Cohorts

Humanitas Research Hospital Milan

VICTORIA Study Protocol Visceral cancer

- Prospectively recruited ~180 Pts PDAC (→ PDOs)
- Retrospective biobanked 58 Pts PDAC
- Retrospective biobanked 46 Pts Ampullary Cancer

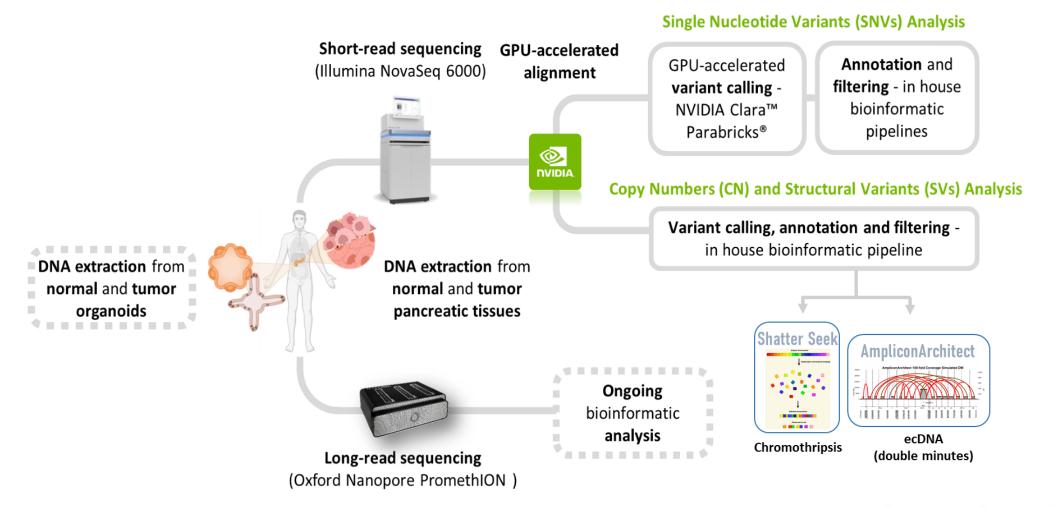
Genomes of Pts sequenced N=452

Infermi Hospital Rimini

PILOT WGS Study Protocol Pancreatic cancer

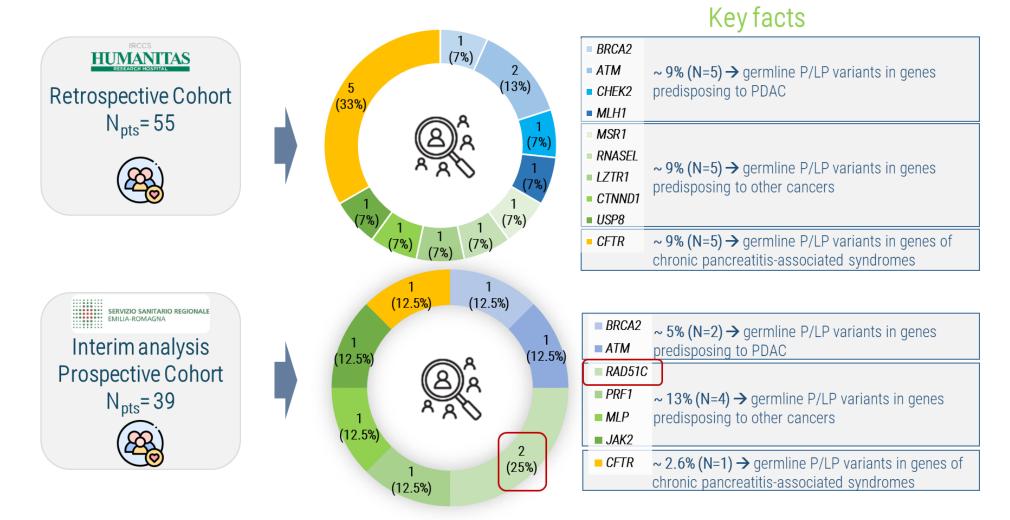
☐ Prospectively recruited **56 Pts PDAC**

Combined study cohort N=340

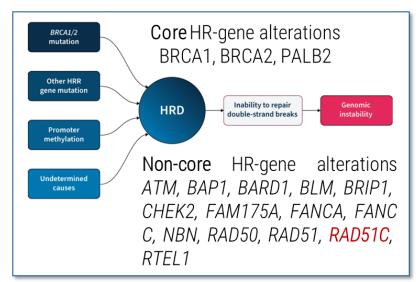


Schematic Overview of the Experimental Workflow

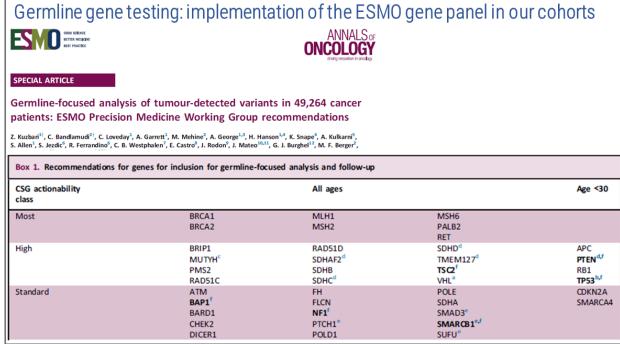
Marangoni S.*, Furia F.* Vecchi M.*, Landuzzi F. * Cavalli A* et al. 2025 Submitted



Germline Analysis of SNVs in the two Italian PDAC Cohorts



RAD51C: a New PDAC Cancer Susceptibility Gene


► J Gastrointest Oncol. 2018 Aug;9(4):E19–E22. doi: <u>10.21037/jgo.2018.03.11</u> 🗹

Exceptional response to FOLFIRINOX in a patient with pancreatic cancer and a germline *RAD51C* mutation

Sofia Palacio ¹, Terri Pollack ¹, Rachel Silva-Smith ¹, Daniel A Sussman ¹, Peter J Hosein ^{1,⊠}

- ☐ Predictive biomarker of therapy response → potential benefit from platinum-based chemotherapy;
- ☐ RAD51C status as a biomarker for patient stratification and clinical trial eligibility (maintenance olaparib, pembrolizumab + olaparib, others)

Germline Actionable Variants in PDAC Patients - Oncokb

SUBJECTS	ACTIONABLE VARIANT	TREATMENTS	ONCOKB LEVEL	CANCER TYPES
2	BRCA2	Rucaparib	2	Pancreatic Adenocarcinoma, Acinar Cell Carcinoma of the Pancreas
2	Oncogenic mutations	Olaparib	3	Pancreatic Adenocarcinoma, Acinar Cell Carcinoma of the Pancreas
3	ATM Oncogenic mutations	Olaparib Talazoparib+Enzalutamide	1	Prostate cancer
1	CHEK2 Oncogenic mutations	Olaparib Talazoparib+Enzalutamide	1	Prostate Cancer
2	RAD51C	Olaparib Talazoparib+Enzalutamide	1	Prostate Cancer
1	MLH1 Oncogenic mutations warrants further investigation	Talazoparib+Enzalutamide	1	Prostate Cancer

□ Evidence of clinical actionability in ~10% of cases (9/94): HRC-PDC (N=55) + Rimini-PDC (N=39)

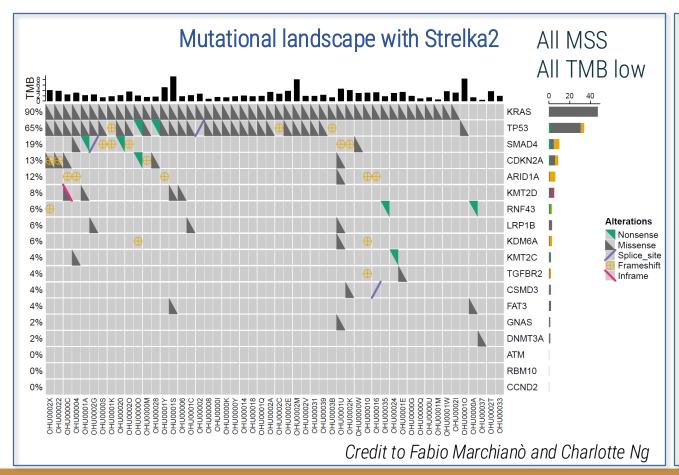
Germline Actionable Variants in PDAC Patients -

Evidence of clinical actionability in ~10% of cases (9/94)

HUMAN RESEARCH HOSP		SERVIZIO SANITARIO REGIONALE EMILIA-ROMAGNA
Cohort	(55) =94 c	+ Rimini (39)

SUBJECTS	ACTIONABLE VARIANT	TREATMENTS ONCOKB CANCER LEVEL TYPES		
2	BRCA2	Rucaparib	2	Pancreatic Adenocarcinoma, Acinar Cell Carcinoma of the Pancreas
2	Oncogenic mutations	Olaparib	3	Pancreatic Adenocarcinoma, Acinar Cell Carcinoma of the Pancreas
3	ATM Oncogenic mutations	Olaparib Talazoparib+Enzalutamide	1	Prostate cancer
1	CHEK2 Oncogenic mutations	Olaparib Talazoparib+Enzalutamide	1	Prostate Cancer
2	RAD51C	Olaparib Talazoparib+Enzalutamide	1	Prostate Cancer
1	MLH1 Oncogenic mutations warrants further investigation	Talazoparib+Enzalutamide	1	Prostate Cancer

- □ In ~ 7.4% (7/94): germline P/LP variants predisposing to PDAC (i.e., BRCA1/2, ATM, MLH1, CHEK2, etc.)
- □ In \sim 9.6% (9/94): germline P/LP variants predisposing to other types of cancers (i.e., LZTR1, RAD51C, etc.)
- ☐ In ~ 2.1% (2/94): germline P/LP variants in RAD51C a non-core HR-gene
 - Biomarker Predictive of therapy response to platinum-based chemotherapy
 - Biomarker for patient stratification in clinical trials (maintenance olaparib, pembrolizumab + olaparib, others)
 - \rightarrow RAD51C a cancer susceptibility gene also in PDAC (?)

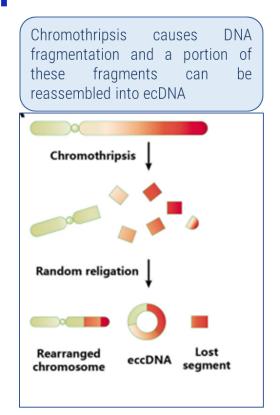


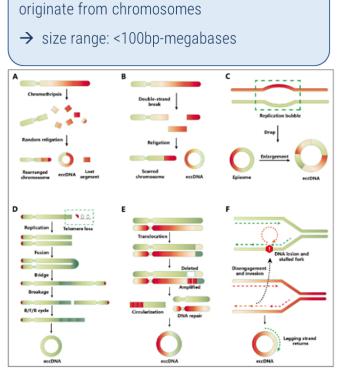
Somatic Analysis of SNVs in the HRC-PDAC Cohort (N=52)

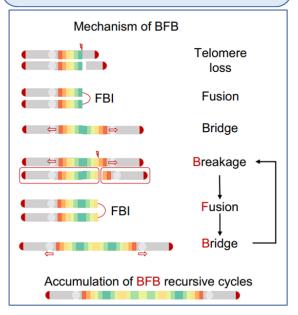
Comparison of mutation frequencies identified in key driver genes reported in TCGA and Korean PDAC cohorts

	HRC cohort (N=52)	TCGA (N=150)	Korean Cohort (N=87)
	%	%	%
KRAS	90.0	90.7	94.3
TP53	65.0	69.3	74.7
SMAD4	19.0	24.7	29.9
CDKN2A	13.0	14.7	23.0
GNAS	2.0	6.7	6.9
RNF43	6.0	6.0	10.3
ARID1A	12.0	5.3	11.5
TGFBR2	4.0	5.3	4.6
ATM	0.0	3.3	10.3
DNMT3A	2.0	3.3	1.1

(Adapted from Jung K. et al. 2022 Scientific Reports 12:20937)




DNA (eccDNA)


Somatic Analysis of Complex SVs in the HRC-PDAC Retrospective Cohort

Extrachromosomal circular

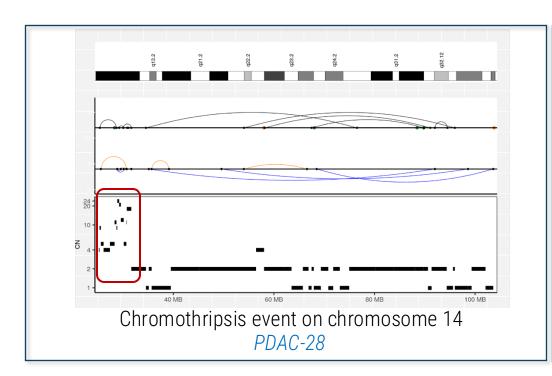
Breakage-fusion-bridge (BFB) is a complex rearrangement and repetition of BFB cycles contributes to copy number (CN) amplifications

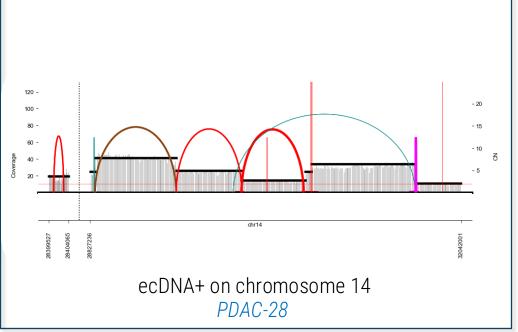
The acentric structure of ecDNA facilitates random segregation, highly elevated CN, intratumoral genetic heterogeneity and rapid tumor evolution \rightarrow Aggressive tumor growth

→ Therapeutic resistance

Prevalence of Chromothripsis and ecDNA/BFB events in the HRC-PDAC Cohort (N=52)

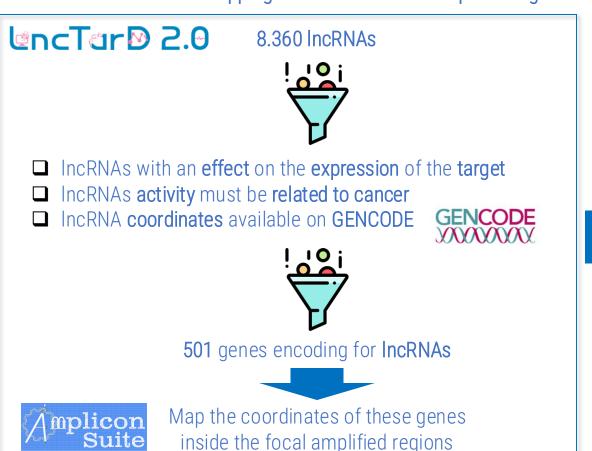
Chromothripsis


High confidence chromothripsis events: ~ 33% (17/52)


ecDNA/BFB

ecDNA+: $\sim 6\% (3/52)$ BFB+: $\sim 8\% (4/52)$

ecDNA+ and BFB+: ~ 2% (1/52)

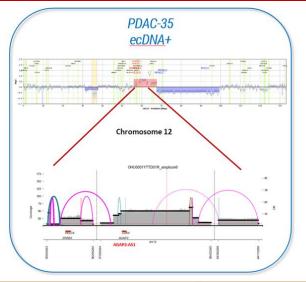


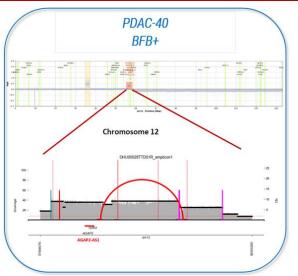
Analysis of IncRNAs Involved in Complex Genomic Alterations in the HRC-PDAC Cohort

Mapping IncRNAs into focal amplified regions identified by AmpliconArchitect Suite (ecDNA/BFB/CNC/Linear)

Five Pts with IncRNA-encoding genes located wthin focal amplified regions (ecDNA/BFB/CNC/Linear)

Sample ID	Classification	Chromosome	Amplicon	IncRNA-encoding gene
PDAC-35	ecDNA	12	amplicon6	AGAP2-AS1, GIHCG
	BFB	6	amplicon1	MDC1-AS1
	BFB	6	amplicon4	FOXP4-AS1
PDAC-51	ecDNA	11	amplicon3	ENSG00000261347
PDAC-40	BFB	12	amplicon1	AGAP2-AS1, GIHCG
PDAC-45	Linear	6	amplicon1	FOXP4-AS1
PDAC-57	Linear	8	amplicon2	LINC00536
	CNC	8		PCAT1, CASC19, CCAT2, CASC11, PVT1, CCDC26

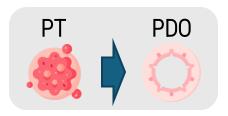



Analysis of IncRNAs Involved in Complex Genomic Alterations in the HRC-PDAC Cohort

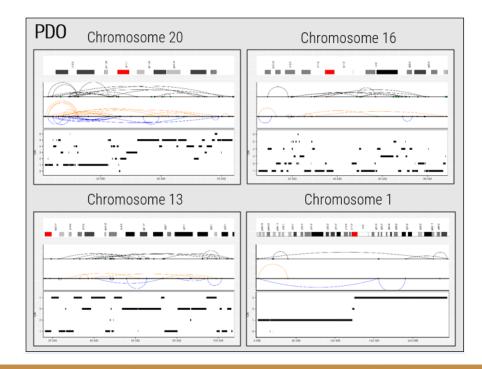
Mapping IncRNAs into ecDNA/BFB

Sample ID	AmpliconClassifier	Amplicon	IncRNA-encoding	Chromosome	Position	Position	Amplicon
			gene		start	end	size
PDAC-35	ecDNA	amplicon6	AGAP2-AS1 , GIHCG	12	57687443	58280425	593 kb
	BFB	amplicon1	MDC1-AS1	6	30217501	31027098	810 kb
	BFB	amplicon4	FOXP4-AS1	6	41546787	42042554	496 kb
PDAC-51	ecDNA	amplicon3	ENSG00000261347	11	69464210	69796351	332 kb
PDAC-40	BFB	amplicon1	AGAP2-AS1 , GIHCG	12	57605055	58049325	444 kb

AGAP2-AS1



Genomic Characterization of Patient Derived Organoids (PDOs, N=8)

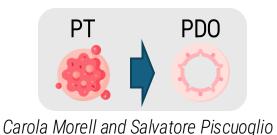


Carola Morell and Salvatore Piscuoglio

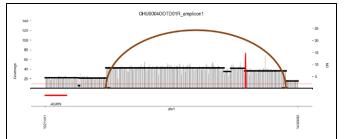
Pt ID	Tissue type	Coverage (WGS)	Facets Ploidy	Facets Purity	<i>KRAS</i> (p.Gly12Asp) AF	<i>TP53</i> (p.Glu286Gln) AF	<i>KMT2D</i> (p.Gln3454*) AF
D033	Primary Tumor	83	2.00	NA	20.00%	31.70%	23.50%
P033	Tumor Organoid	75	1.92	0.94	49.00%	homozygous	51.20%

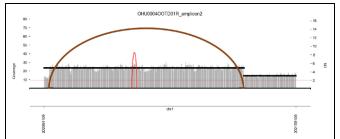
chromothripsis

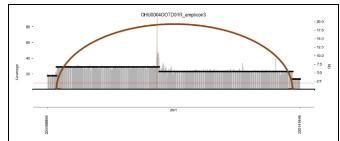
PDO chromothripsis



Genomic Characterization of Patient Derived Organoids (PDOs, N=8)


Pt ID	Tissue type	Coverage (WGS)	Facets Ploidy	Facets Purity	KRAS (p.Gly12Asp) AF	<i>TP53</i> (p.Arg273Cys) AF	KMT2C (p.Asp348Asn) AF
DOCE	Primary Tumor	90	2.10	0.30	4.50%	4.40%	/
P065	Tumor Organoid	103	1.92	0.96	44.60%	homozygous	4.20%

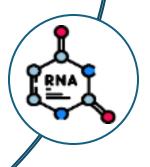



3 different ecDNA+ in chromosome 1

sample_name	amplicon_number	amplicon_decomposition_class	ecDNA+
OHU0004OOTD01R	amplicon1	Cyclic	Positive
OHU0004OOTD01R	amplicon2	Cyclic	Positive
OHU0004OOTD01R	amplicon3	Cyclic	Positive

IncRNAs mapping in these amplicons
LINC01342
LINC01354
LINC00184

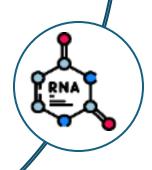
scRNASeq analysis on these two organoids in ongoing


Whole Genome Sequencing: A Game-Changer in PDAC Research and Healthcare

Recommendation for genetic testing for all pancreatic cancer patients regardless of their family history (The National Comprehensive Cancer Network - NCCN)

WGS provides enough data to personalize therapeutic approaches and treatments to PDAC (and cancer at large) → select a treatment that will provide the most benefit with the least risk of side effects (best treatment is the treatment that's right for you)

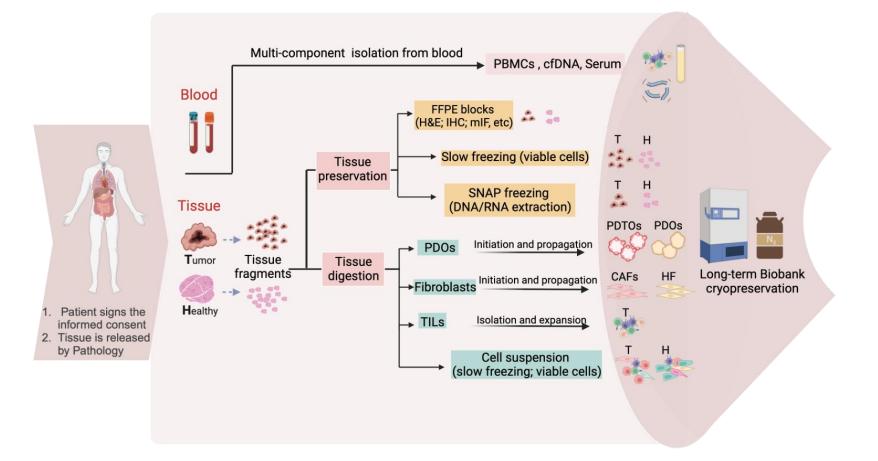
WGS enables the analysis of **Inc-RNAs** and **transposable elements** to identify other types of clinically relevant variation and interpret the impact of many **intronic** and **non-coding** variants in PDAC (and cancer at large)

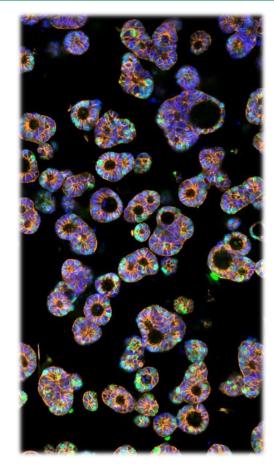

Whole Genome Sequencing: A Game-Changer in PDAC Research and Healthcare

Recommendation for genetic testing for all pancreatic cancer patients regardless of their family history (The National Comprehensive Cancer Network - NCCN)

WGS provides enough data to personalize therapeutic approaches and treatments to PDAC (and cancer at large) → select a treatment that will provide the most benefit with the least risk of side effects (best treatment is the treatment that's right for you)

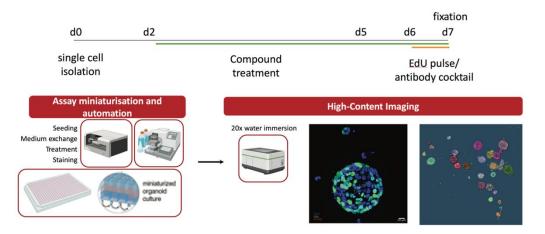
WGS enables the analysis of **Inc-RNAs** and **transposable elements** to identify other types of clinically relevant variation and interpret the impact of many **intronic** and **non-coding** variants in PDAC (and cancer at large)

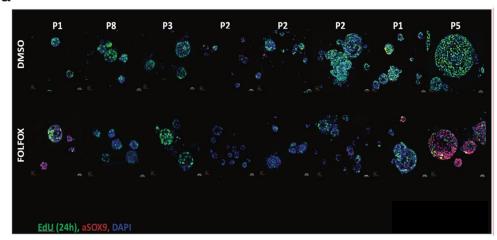


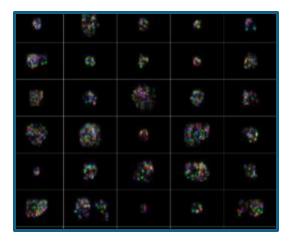


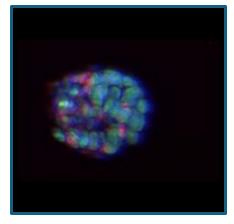
Establishing a Nationwide Living Biobank

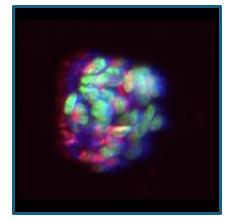
HUMANITAS RESEARCH HOSPITAL

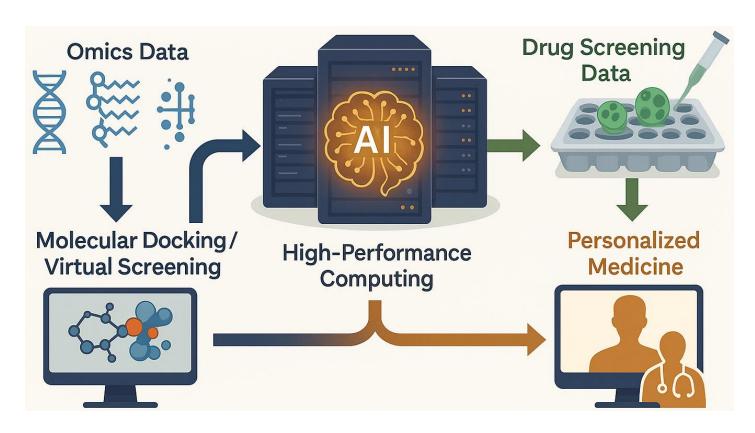





Drug screening and personalized immunotherapy




d



HPC-Driven Personalized Drug Discovery

- Ricerca oncologica avanzata: integrazione di dati multi-omici, organoidi e Al per comprendere i meccanismi tumorali e predire la risposta ai trattamenti.
- Accelerazione della drug discovery: uso di HPC e screening virtuali per identificare e validare nuovi farmaci in modo più rapido, mirato e sostenibile.
- Medicina di precisione predittiva: sviluppo di modelli digitali e biologici per personalizzare le terapie e ridurre sperimentazioni inefficaci.
- Banca di modelli tumorali: creazione di una biobanca vivente nazionale, estendibile a livello europeo, per condividere modelli preclinici standardizzati e dati interoperabili.
- Impatto sul SSN: infrastruttura dati nazionale che migliora efficienza, sicurezza e accesso alle cure, rafforzando la competitività scientifica del Paese.

What's next

Scaling up the PoC to the national health system

- Involving further hospitals (IRCCS and non)
- Define a national strategy for data transfer, storage, and mining
- Make a homogeneous system for EHR
- Implement next-generation EHR models for omics data
- Create a national organoid biobank for PDAC and other oncology diseases
- Identify innovative targets for anti-cancer drug discovery
- HPC-driven personalized drug discovery and development
- Novel biological and medical discovery exploiting the amount of data generated

ACKNOWLEDGMENTS

HUMANITAS

Luigi Terracciano Charlotte Ng Salvatore Piscuoglio Fabio Marchianò Carola Morell

SERVIZIO SANITARIO REGIONALE
EMILIA-ROMAGNA

Luigi Veneroni Gianluca Dirienzo Anna Rita Lombardi Valentina Arcangeli

Alice Sermasi Francesco Nicassio, Matteo Marzi Luca Pandolfini Stefania Girotto

MEDICAL & COMPUTATIONAL GENOMICS

Researchers Manuela Vec

Alessandro Zerbi

Giovanni Capretti

Manuela Vecchi Alessandro Coppe Fabio Landuzzi Sara Trova

PhD students

Silvia Maria Macrì Stefano Marangoni Gaia Mazzocchetti Fabiana Ferrari

Laboratory technicians

Vittoria Perseghin Martina Toscano Alessandro De Filippo Pariya Kiyashemshaki

Research fellows

Federica Furia Debora Charrance Mariantonietta Palazzo Salvatore Di Dio Andrè Fiou

IT technicians

Christopher Savin Marcelo Eduardo Redoschi

ADMINISTRATIVE SUPPORT

Project Management

Alessandra Gastaldi Emilie Jacquemod Arianna Torricelli Axel Bongiovanni

Legal

Antonella Fontana Marzia Vona Carlo Tacchino Arianna De Arcangelis

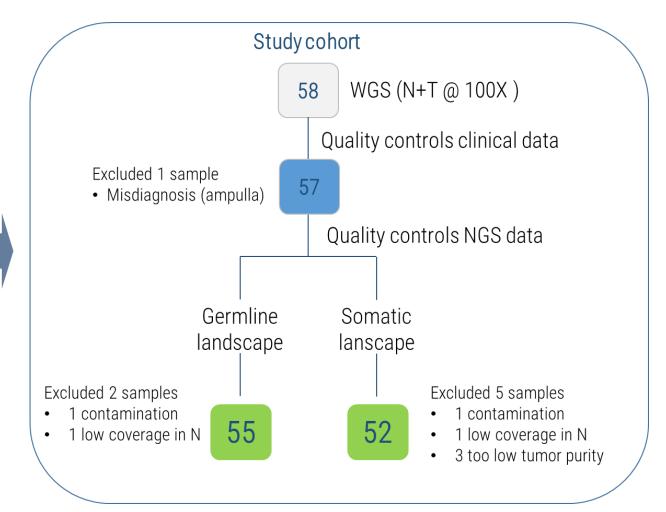
<u>Technology Transfer</u>

Biagio De Angelis

Communication

Valeria delle Cave Riccardo Lucentini

BACK UP SLIDE



Retrospective HRC-PDAC cohort

