

Dipartimento Neuroscienze "Rita Levi Montalcini"

IronAD project

Fabrizio Pizzagalli, Carla D'Agostino, Annamaria Vernone, Ilaria Stura, Federico D'Agata, Caterina Guiot


fabrizio.pizzagalli@unito.it carla.dagostino@unito.it

CN1-Spoke 8 – In silico Medicine & Omics data WP8.2 Digital Twins & in-silico trials

Outline

- Background
- Aims
- Datasets
- Tools for Neuroimaging processing
- Preliminary results
- Goals to be achieved by the end of the project.

Background: iron homeostasis

Background: iron homeostasis

REVIEW published: 22 March 2022 doi: 10.3389/fnagi.2022.830569

Iron Dyshomeostasis and Ferroptosis: A New Alzheimer's Disease Hypothesis?

Feixue Wang^{1,2}, Jlandong Wang^{1,2}, Ying Shen^{1,2}, Hao Li², Wolf-Dieter Rausch⁴ and Xiaobo Huang^{1,2}*

NeuroImage 244 (2021) 118584

The effect of beta-amyloid and tau protein aggregations on magnetic susceptibility of anterior hippocampal laminae in Alzheimer's diseases

Dhaid for sphilling

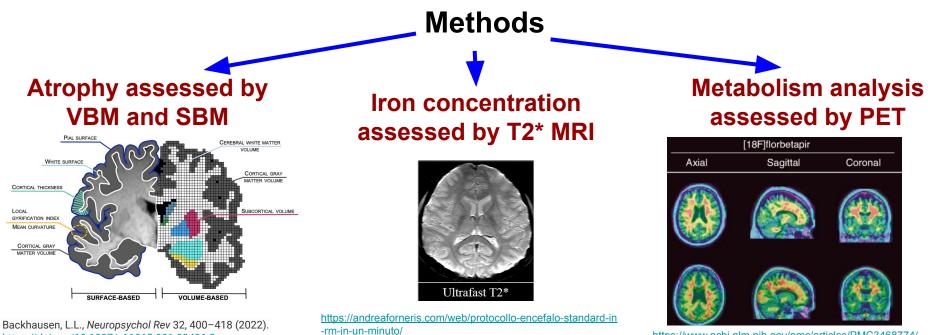
Zhiyong Zhao^a, Lei Zhang^{b,c}, Qingqing Wen^a, Wanrong Luo^a, Weihao Zheng^a, Tingting Liu^a, Yi Zhang^a, Keqing Zhu^{b,c,**}, Dan Wu^{a,*}

ORIGINAL RESEARCH published: 22 February 2021 doi: 10.3389/maoi.2021.607858

Machine Learning Profiling of Alzheimer's Disease Patients Based on Current Cerebrospinal Fluid Markers and Iron Content in Biofluids

Eleonora Ficiarà^{1*}, Silvia Boschi^{1:3}, Shoeb Ansari¹, Federico D'Agata¹, Ornella Abollino³, Paola Caroppo⁴, Gluseppe Di Fede⁴, Antonio Indaco⁴, Innocenzo Rainero¹ and Caterina Guiot¹ Iron homeostasis can be disturbed by:

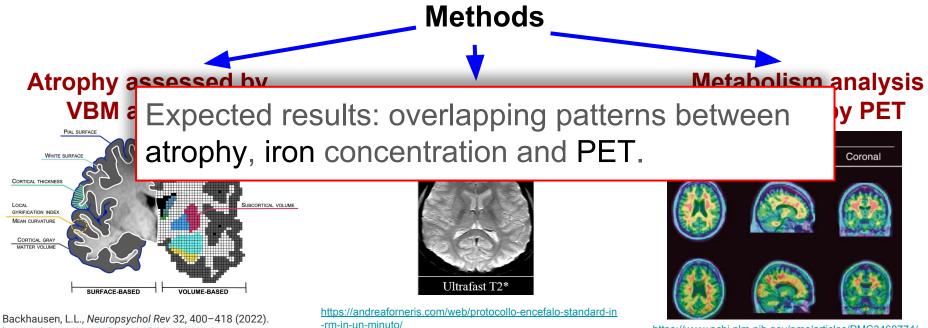
- genetic factors
- environmental factors
- aging


\checkmark

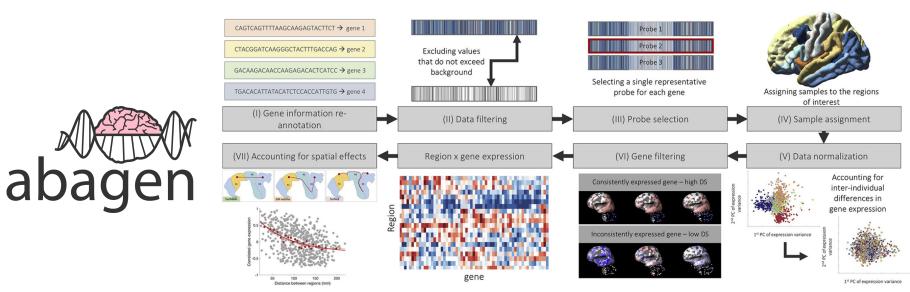
iron metabolism diseases, including many neurodegenerative diseases such as **Alzheimer's disease (AD).**

- 1. Evaluate the relationship between the presence/accumulation of iron and morphological abnormalities in healthy subjects and those with AD, in order to use this characteristic as a potential biomarker for the early diagnosis of AD.
- 2. Analysis of candidate genes of interest for AD.

- 1. Evaluate the relationship between the presence/accumulation of iron and morphological abnormalities in healthy subjects and those with AD, in order to use this characteristic as a potential biomarker for the early diagnosis of AD.
- 2. Analysis of candidate genes of interest for AD.

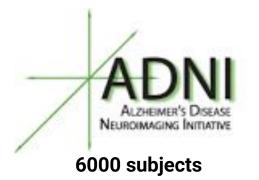

https://doi.org/10.1007/s11065-021-09496-2

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3468774/


- 1. Evaluate the relationship between the presence/accumulation of iron and morphological abnormalities in healthy subjects and those with AD, in order to use this characteristic as a potential biomarker for the early diagnosis of AD.
- 2. Analysis of candidate genes of interest for AD.

https://doi.org/10.1007/s11065-021-09496-2

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3468774/


- 1. Evaluate the relationship between the presence/accumulation of iron and morphological abnormalities in healthy subjects and those with AD, in order to use this characteristic as a potential biomarker for the early diagnosis of AD.
- 2. Analysis of candidate genes of interest for AD.

Methods

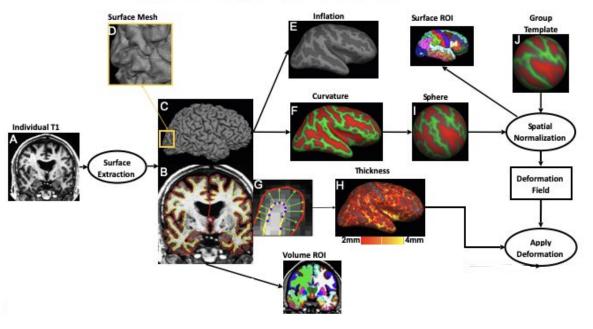
Aurina Arnatkevičiūtė, Ben D. Fulcher, Alex Fornito, A practical guide to linking brain-wide gene expression and neuroimaging data, NeuroImage, Volume 189, 2019

IMAGES DATASETS

ADNI is a longitudinal multicenter study designed to develop clinical, imaging, genetic, and biochemical biomarkers for the early detection and tracking of Alzheimer's disease (AD).

3045 subjects

The Australian Imaging, Biomarker and Lifestyle (AIBL) Flagship Study of Ageing is an ongoing observational cohort study helping researchers new insights into the unlock progression onset and of Alzheimer's disease.



OASIS-3 is a longitudinal multimodal neuroimaging, clinical, cognitive, and biomarker dataset for normal aging and Alzheimer's Disease.

TOOLS Softwares

FreeSurfer

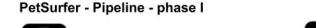
FreeSurfer Analysis Pipeline Overview

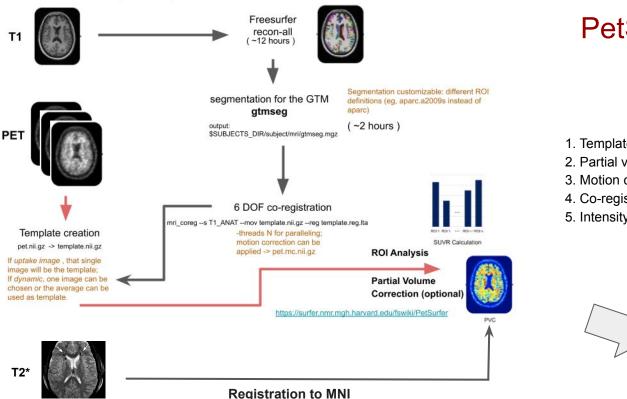
https://surfer.nmr.mgh.harvard.edu/fswiki/FreeSurferAnalysisPipelineOverview

Freesurfer pipeline (T1w):

- 1. Data conversion from DICOM to Nii.gz
- 2. T1W1 input
- 3. Skull stripping
- 4. Registration (spatial normalization)
- 4. Intensity normalization
- 5. Volumetric labeling
- 6. Tissue segmentation
- 7. Surface atlas registration
- 8. Surface Extraction

TOOLS Softwares


Individual T1

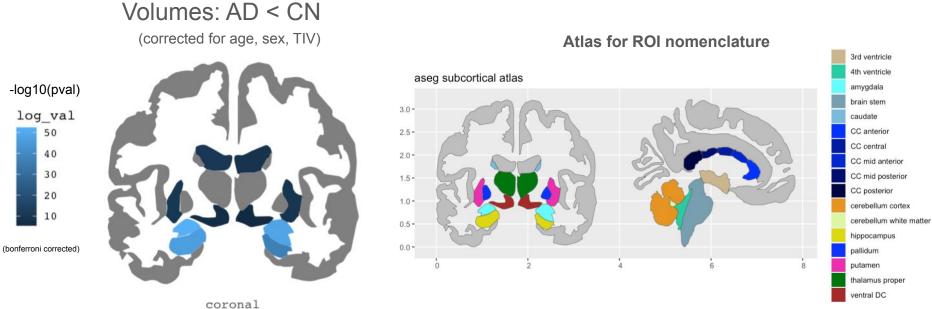

FreeSurfer

FreeSurfer Analysis Pipeline Overview

https://surfer.nmr.mgh.harvard.edu/fswiki/FreeSurferAnalysisPipelineOverview

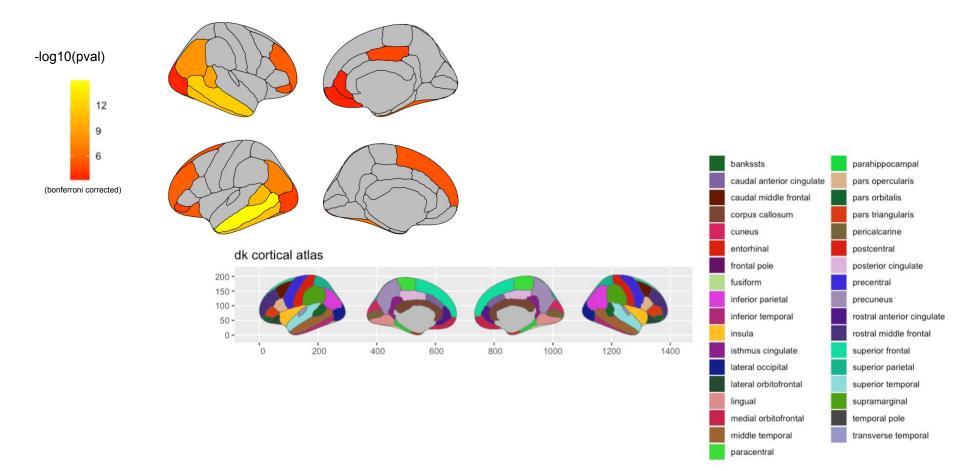
PetSurfer

- 1. Template creation
- 2. Partial volume correction
- 3. Motion correction across PET frames
- 4. Co-registration PET images with T1
- 5. Intensity normalization



PET and T2* pipeline: workflow showing the preprocessing steps for the PET data analysis, using the PetSurfer pipeline (https://surfer.nmr.mgh.harvard.edu/fswiki/PetSurfer). The output will be superimposed to the T2* maps to detect the iron deposition related to metabolic abnormalities.

PRELIMINARY RESULTS


- **Δ** 206 CN / 160 AD including T1w, T2* e β amiloide PET (AV45) from ADNI
- Building up T1 e PET pipeline
- **D** Building up VM on Cloud CINECA
- Running the T1 pipeline using FreeSurfer on Cloud CINECA

ADNI: 160 AD, 206 CN

Cortical surface area: AD < CN

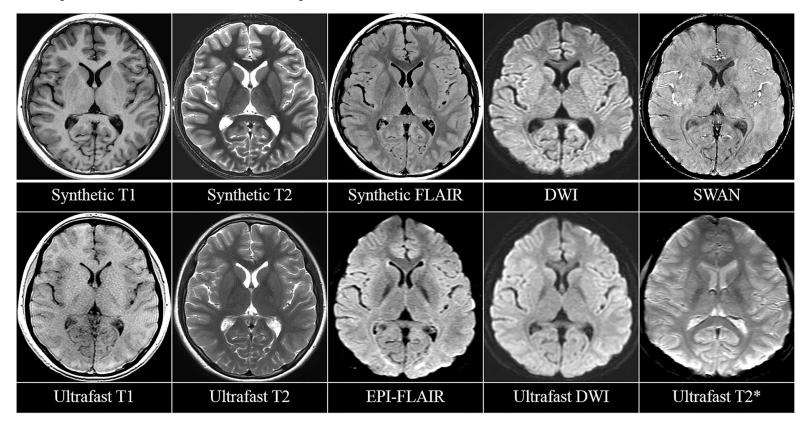
(corrected for age, sex, TIV)

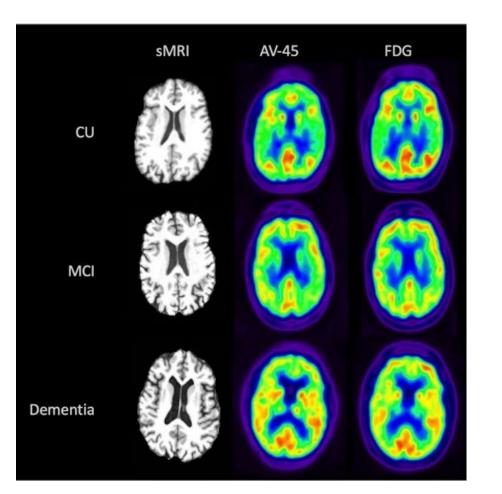
Achievements by the ended of the project and UPDATES

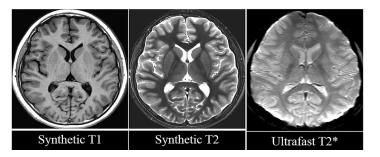
- PET pipeline to run on CINECA
- **D** T2* PET β amiloide comparison
- □ Apply predictive models (ML) using longitudinal data

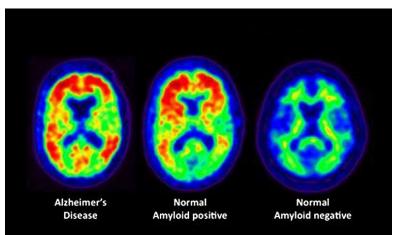
- □ RAC approved 06/21/2024:
 - 100.000 core-hours on Leonardo DCGP and 20 TB of storage

Thank you!


ASSESSING IRON OVERLOAD AND ABNORMAL MORPHOLOGIES IN NORMAL VS AD BRAIN BASED ON COMPARISON BETWEEN PET & RMI IMAGING BASED ON AVAILABLE LARGE DATASETS


FOCUS: -ABETA PLAQUES ARE DETECTABLE BY PET AND ARE EXPECTED TO BE SUPERPOSED TO IRON DEPOSITION SITES


-MRI IMAGES ARE MORE EASILY AVAILABLE AND SOME SPECIFIC SEQUENCES ARE EXPECTED TO BE SENSITIVE FOR THE MAGNETIC PROPERTIES OF SMALL IRON DEPOSITS


-MORPHOLOGICAL DIFFERENCES IN BRAIN REGIONS, E.G. HIPPOCAMPAL SHRINKING AND/OR ABNORMAL SULCAL FEATURES DETACTABLE FROM MRI IN CONTROL AND AD PATIENTS

MRI-pet tools: t1, t2, pet ab-tau

