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Integration



Integration of single cell profiles from normal breast, breast cancer primary tumors and metastatic lymph 
nodes.
Prior to final integration of cancer and normal single cell datasets, we first separately integrated and down-sampled the 
cancer and normal datasets separately. ER+, HER2+, TNBC, and tumors derived from BRCA1 patients were obtained 
from GSE161529. Tumor involved lymph nodes and normal breast tissues were also obtained from the same dataset. 
Additional primary tumors and paired metastatic lymph nodes were obtained from the GSE167036 dataset. The human 
breast cell atlas, assembled from 55 donors, who underwent reduction mammoplasties or risk reduction mastectomies, 
was used to integrate single cell normal breast data. To reduce the size, without affecting complexity, normal breast 
(from HBCA and from GSE161529) datasets were integrated with Scanorama and each cluster was randomly down-
sampled to 1000 cells. Identical procedure was also performed on the primary tumor datasets.
The aneuploidy was tested using scevan and copykat, using the stromal (CAFs and TECs) as baseline. 
All datasets were integrated using Scanorama integration and down-sampled to 1000 cells per cluster.



Single cell profiling of primary and paired metastatic lymph 
node tumors in breast cancer patients.   GSE167036

• Characterize the 
microenvironment of 
LNMT and PT, which 
may shed light on the 
individualized 
therapeutic strategies 
for breast cancer 
patients with lymph 
node metastasis.
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Fig. 1 | Microenvironmental landscape of PT and LNMT in breast cancer.
a Diagram of the single-cell sequencing strategy for lymph node metastasis
patients. b, c UMAP embedding plot showing identified clusters of all 118845 cells
from paired PT (primary tumor) and LNMT (lymph nodemetastasized tumors) of 8
LNMT patients. Cells were colored according to their clusters (b) or tissues (c). The
number of cells per cluster, per patient, and per tissue is summarized in Supple-
mentary data 2. d Bar plots showing the differences in themajor cell types between

the 2 tissues (PT: n = 8 samples, LNM: n = 8 samples). Statistical testing was per-
formed by a two-sided Wilcoxon test. Data are presented as mean values+/− SD.
e The relative proportion of clusters between breast tumor and metastasis lymph
node samples. Cell proportion has been normalized by sample size. f Spatial
transcriptome analysis revealed the distribution of epithelial cells in the LNMT of 4
patients. Source data are provided as a Source Data file.
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• Single-cell maps of primary tumors (PTs) and paired LNMTs in 8 breast cancer patients
• They demonstrate that the activation, cytotoxicity, and proliferation of T cells are suppressed in 

LNMT compared with PT
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Fig. 1 | Microenvironmental landscape of PT and LNMT in breast cancer.
a Diagram of the single-cell sequencing strategy for lymph node metastasis
patients. b, c UMAP embedding plot showing identified clusters of all 118845 cells
from paired PT (primary tumor) and LNMT (lymph nodemetastasized tumors) of 8
LNMT patients. Cells were colored according to their clusters (b) or tissues (c). The
number of cells per cluster, per patient, and per tissue is summarized in Supple-
mentary data 2. d Bar plots showing the differences in themajor cell types between

the 2 tissues (PT: n = 8 samples, LNM: n = 8 samples). Statistical testing was per-
formed by a two-sided Wilcoxon test. Data are presented as mean values+/− SD.
e The relative proportion of clusters between breast tumor and metastasis lymph
node samples. Cell proportion has been normalized by sample size. f Spatial
transcriptome analysis revealed the distribution of epithelial cells in the LNMT of 4
patients. Source data are provided as a Source Data file.
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UMAP embedding plot showing identified clusters of all 
118K cells from paired PT (primary tumor) and LNMT 
(lymph node metastasized tumors) of 8 LNMT patients. 
Cells were colored according to their clusters 
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Fig. 1 | Microenvironmental landscape of PT and LNMT in breast cancer.
a Diagram of the single-cell sequencing strategy for lymph node metastasis
patients. b, c UMAP embedding plot showing identified clusters of all 118845 cells
from paired PT (primary tumor) and LNMT (lymph nodemetastasized tumors) of 8
LNMT patients. Cells were colored according to their clusters (b) or tissues (c). The
number of cells per cluster, per patient, and per tissue is summarized in Supple-
mentary data 2. d Bar plots showing the differences in themajor cell types between

the 2 tissues (PT: n = 8 samples, LNM: n = 8 samples). Statistical testing was per-
formed by a two-sided Wilcoxon test. Data are presented as mean values+/− SD.
e The relative proportion of clusters between breast tumor and metastasis lymph
node samples. Cell proportion has been normalized by sample size. f Spatial
transcriptome analysis revealed the distribution of epithelial cells in the LNMT of 4
patients. Source data are provided as a Source Data file.

Article https://doi.org/10.1038/s41467-022-34581-2

Nature Communications | ��������(2022)�13:6823� 3



10

6

19

7

2

11

9

4

17

23

3
1612

1

18

28

22

13

27

14

20
5

24

25
0

8

21

15

30

26
29

−10

−5

0

5

10

−10 −5 0 5
umap_1

um
ap
_2

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

UMAP embedding plot 
showing remaining clusters 
cells from paired PT (primary 
tumor) and LNMT (lymph 
node metastasized tumors) 
of 8 LNMT patients, after 
CD45-positive cells are 
removed (hematopoietic 
cells)
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Cell main_label
What is left in the 
tumor after 
hematopoietic cells are 
removed. 
Major cell types include 
epithelial cells, cancer 
associated fibroblasts 
(CAFs) and enfothelial 
cells (TECs).
Mitotic cells (KI67+ cells 
are mostly of 
hematopoietic origin)



−10

−5

0

5

10

−10 −5 0 5 10
umap_1

um
ap
_2

0
2
4
6
8

KRT18

−10

−5

0

5

10

−10 −5 0 5 10
umap_1

um
ap
_2

0.0
2.5
5.0
7.5
10.0

KRT19

−10

−5

0

5

10

−10 −5 0 5 10
umap_1

um
ap
_2

0

2

4

6

PTPRC

−10

−5

0

5

10

−10 −5 0 5 10
umap_1

um
ap
_2

0.0
2.5
5.0
7.5
10.0
12.5

CD74

Where are the tumor cells?

Single cell profiles from 
metastatic breast cancer lymph 
nodes. 
Cells from the hematopoietic 
lineage (B cells, CD4+ and CD8+ T 
cells, DCs, macrophages, NK and 
plasma cells) were previously 
removed from the lymph nodes. 
Tumor stromal cells, like 
endothelial cells (TEC), and CAFs, 
were also identified and removed. 
CD74 is involved in antigen 
presentation (MHC class II).

To select  true cancer cells, we can 
infer ploidy by using copykat ans 
scevan. 



Inferring CNV status
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To select  true cancer cells, 
we can infer ploidy by using 
copycat or scevan (R 
packages). 

De Falco, A., Caruso, F., Su, XD. et al. A variational algorithm to detect the 
clonal copy number substructure of tumors from scRNA-seq data. Nat 
Commun 14, 1074 (2023). https://doi.org/10.1038/s41467-023-36790-9



Why do we need Integration ?



Stitching together many breast cancer scRNAseq datasets

• ER+
• HER2
• TNBC
• BRCA1
• Normal mammary tissue
• Metastatic lymph nodes

• Many patients and controls
• Removing non cancer cells (if needed)
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The unintegrated dataset with 229 
K cells from normal and cancer 
breast tissues. 
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scanorama_clusters
The final integrated dataset 
contained 229 K cells. 
The initial Scanorama 
integration yielded 94 clusters, 
some with cells engaged in cell 
cycle, as unveiled by the 
Wilcoxon tests. 
Therefore, we removed the cell 
cycle genes (n=97, Seurat S 
and G2 genes) prior to the 
integration, leading to a 
smaller number of Scanorama 
clusters (n=77). 



Integration methods

• Harmony and Seurat – R packages
• Scanorama and scVI Python modules run from R using reticulate

• GPU : scVI



Resources needed for Integration of scRNAseq datasets



Resources needed for Integration of scRNAseq datasets

Small cohort : 100  patients (50K per patient)   =   5 million cells



Remedy for limited resources:     Sketching



ANALYSIS NATURE METHODS

accuracy on real and simulated data are distinguishing factors. 
Overall, Harmony, Seurat v3 and BBKNN have the best usability 
for new users. In contrast, DESC, scANVI and trVAE are lacking in 
usability at the time of writing as they lack function documentation 
or high-quality tutorials.

Discussion
We benchmarked 16 integration methods with four preprocessing 
combinations on 13 integration tasks via 14 metrics that measure 
tradeoffs between batch integration and conservation of biological 
variance. Overall, we observed that method performance is depen-
dent on the complexity of the integration task for RNA and simula-
tion scenarios. For example, the use of Harmony is appropriate for 
simple integration tasks with distinct batch and biological structure; 
however, this method typically ranks outside the top three when 
used for complex real data scenarios, which is in agreement with 

recent benchmarks on simpler batch structures9,28. In contrast, on 
more complex integration tasks, Scanorama (embeddings) and 
scVI worked well. Methods that used cell annotations to integrate 
batches (scGen and scANVI) performed well across tasks.

Our overall rankings were based on metrics measuring differ-
ent aspects of integration success (for an overview, see the web-
site and Supplementary Figs. 31–39). For example, while certain 
bio-conservation metrics prioritized clearly separated cell clusters, 
others measured continuous cellular variation such as trajectories 
and the cell-cycle, or evaluated gene-level output. This diversity 
of metrics further ensured that, even for integrated graph out-
puts, it was possible to measure three batch removal and three 
bio-conservation metrics (Supplementary Table 2). Thus, no indi-
vidual method ranked highly only by optimizing a single metric, for 
example, BBKNN, for which the underlying optimization function is 
similar to the graph iLISI metric. Our metric aggregation approach 
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Fig. 5 | Guidelines to choose an integration method. a, Table of criteria to consider when choosing an integration method, and which methods fulfill 
each criterion. Ticks show which methods fulfill each criterion and gray dashes indicate partial fulfillment. When more than half of the methods fulfill a 
criterion, we instead highlight the methods that do not by a cross; hence blank spaces denote a cross except in the three rows with labeled crosses. Method 
outputs are ordered by their overall rank on RNA tasks. Python and R symbols indicate the primary language in which the method is programmed and 
used. Considerations are divided into the five broad categories (input, scIB results, task details, speed and output), which cover usability (input, output), 
scalability (speed) and expected performance (scIB results, task details). If not otherwise specified, criteria relate to RNA results. As a dataset specific 
alternative, method selection can be guided by running the scIB pipeline to test all methods on a user-provided dataset. b, Schematic of the relative 
strength of batch effect contributors in our study.
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Benchmarking Integration of scRNAseq



Automated cell type 
annotation



Automated annotation of scRNAseq :   Azimuth

Unintegrated PBMC  (blood) datasets



Automated annotation of scRNAseq :   Azimuth

Integrated PBMC  (blood) datasets



Automated cell annotation (using a reference)

• Azimuth
• singleR
• cellBlast
• scLearn
• cellAtlasSearch
• Many others



Automated annotation tools 
can be GPU-enabled



Conclusions

• The number and size of single cell cancer datasets is steadily 
increasing
• Integration of scRNAseq datasets is required to  study cancer at a 

single cell level
• With larger number of cells projects become more informative 

and more demanding
• The current tools for single cell RNAseq need to be adapted to 

enable efficient management and analysis


