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Integration



Integration of single cell profiles from normal breast, breast cancer primary tumors and metastatic lymph
nodes.

Prior to final integration of cancer and normal single cell datasets, we first separately integrated and down-sampled the
cancer and normal datasets separately. ER+, HER2+, TNBC, and tumors derived from BRCAT1 patients were obtained
from GSE161529. Tumor involved lymph nodes and normal breast tissues were also obtained from the same dataset.
Additional primary tumors and paired metastatic lymph nodes were obtained from the GSE167036 dataset. The human
breast cell atlas, assembled from 55 donors, who underwent reduction mammoplasties or risk reduction mastectomies,
was used to integrate single cell normal breast data. To reduce the size, without affecting complexity, normal breast
(from HBCA and from GSE161529) datasets were integrated with Scanorama and each cluster was randomly down-
sampled to 1000 cells. Identical procedure was also performed on the primary tumor datasets.

The aneuploidy was tested using scevan and copykat, using the stromal (CAFs and TECs) as baseline.

All datasets were integrated using Scanorama integration and down-sampled to 1000 cells per cluster.



Single cell profiling of primary and paired metastatic lymph
node tumors in breast cancer patients. GSE167036
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e Single-cell maps of primary tumors (PTs) and paired LNMTs in 8 breast cancer patients
* They demonstrate that the activation, cytotoxicity, and proliferation of T cells are suppressed in
LNMT compared with PT



UMAP embedding plot showing identified clusters of all

118K cells from paired PT (primary tumor) and LNMT

(lymph node metastasized tumors) of 8 LNMT patients.
e Cells were colored according to their clusters
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UMAP embedding plot showing identified clusters of all

118K cells from paired PT (primary tumor) and LNMT

(lymph node metastasized tumors) of 8 LNMT patients.
e Cells were colored according to their clusters
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UMAP embedding plot
showing remaining clusters
cells from paired PT (primary
tumor) and LNMT (lymph
node metastasized tumors)
of 8 LNMT patients, after
CD45-positive cells are
removed (hematopoietic
cells)
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What is left in the
tumor after

hematopoietic cells are
removed.

Major cell types include
epithelial cells, cancer
associated fibroblasts
(CAFs) and enfothelial
cells (TECs).

Mitotic cells (KI67+ cells
are mostly of
hematopoietic origin)
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Where are the tumor cells?

Single cell profiles from
metastatic breast cancer lymph
nodes.

Cells from the hematopoietic
lineage (B cells, CD4+ and CD8+ T
cells, DCs, macrophages, NK and
plasma cells) were previously
removed from the lymph nodes.
Tumor stromal cells, like
endothelial cells (TEC), and CAFs,
were also i1dentified and removed.
CD74 is involved 1n antigen
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To select true cancer cells, we can
infer ploidy by using copykat ans
scevan.
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Inferring CNV status
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To select true cancer cells,
we can infer ploidy by using
copycat or scevan (R
packages).
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De Falco, A., Caruso, F., Su, XD. et al. A variational algorithm to detect the
clonal copy number substructure of tumors from scRNA-seq data. Nat
Commun 14, 1074 (2023). https://doi.org/10.1038/s41467-023-36790-9



Why do we need Integration ?
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Fig. 1| Overview of Harmony algorithm. PCA embeds cells into a space with reduced dimensionality. Harmony accepts the cell coordinates in this reduced
space and runs an iterative algorithm to adjust for dataset specific effects. a, Harmony uses fuzzy clustering to assign each cell to multiple clusters, while

a penalty term ensures that the diversity of datasets within each cluster is maximized. b, Harmony calculates a global centroid for each cluster, as well

as dataset-specific centroids for each cluster. ¢, Within each cluster, Harmony calculates a correction factor for each dataset based on the centroids.

d, Finally, Harmony corrects each cell with a cell-specific factor: a linear combination of dataset correction factors weighted by the cell’s soft cluster
assignments made in step a. Harmony repeats steps a to d until convergence. The dependence between cluster assignment and dataset diminishes with
each round. Datasets are represented with colors, cell types with different shapes.



Stitching together many breast cancer scRNAseq datasets

ER+
HER2
TNBC
BRCA1

Normal mammary tissue

Metastatic lymph nodes

* Many patients and controls
* Removing non cancer cells (if needed)



The unintegrated dataset with 229
K cells from normal and cancer
breast tissues.
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The final integrated dataset
contained 229 K cells.

The 1nitial Scanorama
integration yielded 94 clusters,
some with cells engaged in cell
cycle, as unveiled by the
Wilcoxon tests.

Therefore, we removed the cell
cycle genes (n=97, Seurat S
and G2 genes) prior to the
integration, leading to a
smaller number of Scanorama
clusters (n=77).



Integration methods

* Harmony and Seurat — R packages
* Scanorama and scVI Python modules run from R using reticulate

e GPU : scVI



Resources needed for Integration of scRNAseq datasets
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Resources needed for Integration of scRNAseq datasets
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Small cohort: 100 patients (50K per patient) = 5 million cells



Remedy for limited resources:
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Input

Task details Scib results

Speed

Output

Considerations

Programming language
Method runs without
additional information

Consistent top
performer

Top method on small/

simple tasks

Top method on large/

complex tasks

Top method on ATAC

data

Integrates strong batch
effects

Top method for recovery

cell states or modules

Confounding of bio and
batch variance

Top method for
trajectories

Method deals with

varying compositions
Fast method for quick
results

Scales well to large
datasets on CPU

Method has GPU
support

Scales well to feature
spaces beyond genes

Method shows

corrected expression

Method gives relative
cell embeddings

Benchmarking Integration of scRNAseq
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Luecken, M.D., Blttner, M., Chaichoompu, K. et al. Benchmarking atlas-
level data integration in single-cell genomics. Nat Methods 19, 41-50 (2022).
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Automated cell type
annotation



Automated annotation of scRNAseq : Azimuth
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Automated annotation of scRNAseq : Azimuth
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Automated cell annotation (using a reference)

* Azimuth

* singleR

* cellBlast

* scLearn

* cellAtlasSearch
* Many others



Automated annotation tools
can be GPU-enabled
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Conclusions

* The number and size of single cell cancer datasets is steadily
Increasing

* Integration of scRNAseq datasets is required to study cancer ata
single cell level

* With larger number of cells projects become more informative
and more demanding

* The current tools for single cell RNAseq need to be adapted to
enable efficient management and analysis



